ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Электродуговой двигатель. Ракетные двигатели

Электрический ракетный двигатель

Электрический ракетный двигатель – ракетный двигатель, принцип действия которого основан на использовании, для создания тяги электрической энергии, получаемой от энергоустановки, находящейся на борту космического аппарата. Основная сфера применения – небольшая коррекция траектории, а также ориентация в пространстве космических аппаратов. Комплекс, состоящий из электрического ракетного двигателя, системы подачи и хранения рабочего тела, системы автоматического управления и системы электропитания, называется электроракетной двигательной установкой.

Упоминание о возможности использования в ракетных двигателях электрической энергии для создания тяги встречается в трудах К. Э. Циолковского. В 1916-1917 гг. были проведены первые эксперименты Р. Годдардом, и уже в 30-х гг. XX в. под руководством В. П. Глушко был создан один из первых электрических ракетных двигателей.

В сравнении с другими ракетными двигателями электрические позволяют увеличить срок существования космического аппарата, и при этом значительно снижается масса двигательной установки, что позволяет увеличить полезную нагрузку, получить наиболее полные массогабаритные характеристики. Используя электрические ракетные двигатели, можно сократить длительность полета к дальним планетам, а также сделать полет к какой-либо планете возможным.

В середине 60-х гг. ХХ в. активно велись испытания электрических ракетных двигателей на территории СССР и США, а уже в 1970-х гг. они использовались как штатные двигательные установки.

В России классификация идет по механизму ускорения частиц. Можно выделить следующие типы двигателей: электротермические (электронагревные, электродуговые), электростатические (ионные, в том числе коллоидные, стационарные плазменные двигатели с ускорением в анодном слое), сильноточные (элекромагнитные, магнитодинамические) и импульсные двигатели.

В качестве рабочего тела возможно применение любых жидкостей и газов, а также их смеси. Для каждого типа электродвигателя необходимо применять соответствующие рабочие тела для достижения наилучших результатов. Для электротермических традиционно применяется аммиак, в работе электростатических двигателей используется ксенон, в сильноточных – литий, а для импульсных наиболее эффективным рабочим телом является фторопласт.

Одним из главных источников потерь является энергия, затрачиваемая на ионизацию на единицу ускоренной массы. Преимуществом электрических ракетных двигателей является малый массовый расход рабочего тела, а также высокая скорость истечения ускоренного потока частиц. Верхняя граница скорости истечения теоретически находится в пределах скорости света.

В настоящее время для различных типов двигателей скорость истечения колеблется в пределах от 16 до 60 км/с, хотя перспективные модели смогут дать скорость истечения потока частиц до 200 км/с.

Недостатком является очень малая плотность тяги, также необходимо отметить: внешнее давление не должно превышать давление в ускорительном канале. Электрическая мощность современных электрических ракетных двигателей, применяемых на космических аппаратах, колеблется от 800 до 2000 Вт, хотя теоретическая мощность может достигать мегаватт. КПД электрических ракетных двигателей невысок и варьируется от 30 до 60%.

В ближайшее десятилетие этот тип двигателей в основном будет выполнять задачи по коррекции орбиты космических аппаратов, находящихся как на геостационарных, так и на низких околоземных орбитах, а также для доставки космических аппаратов с опорной околоземной орбиты на более высокие, например геостационарную.

Замена жидкостного ракетного двигателя, выполняющего функцию корректора орбиты, на электрический позволит снизить массу типового спутника на 15%, а если увеличить срок его активного пребывания на орбите, то на 40%.

Одним из наиболее перспективных направлений развития электрических ракетных двигателей является их совершенствование в направлении увеличения мощности до сотен мегаватт и удельного импульса тяги, а также необходимо добиться стабильной и надежной работы двигателя на более дешевых веществах, таких как аргон, литий, азот.

Из книги Большая Советская Энциклопедия (АН) автора БСЭ

Из книги Большая Советская Энциклопедия (ДВ) автора БСЭ

Из книги Большая Советская Энциклопедия (РА) автора БСЭ

Из книги Большая Советская Энциклопедия (СО) автора БСЭ

Из книги Большая Советская Энциклопедия (СУ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЭЛ) автора БСЭ

Из книги Большая энциклопедия техники автора Коллектив авторов

Из книги автора

Из книги автора

Авиационный ракетный двигатель Авиационный ракетный двигатель – двигатель прямой реакции, преобразующий какой-либо вид первичной энергии в кинетическую энергию рабочего тела и создающий реактивную тягу. Сила тяги приложена непосредственно к корпусу ракетного

Из книги автора

Универсальный электрический двигатель Универсальный электрический двигатель – это один из типов однофазного коллекторного двигателя последовательного возбуждения. Работать может как на постоянном, так и на переменном токе. Причем при использовании универсальных

Из книги автора

Электрический двигатель Электрический двигатель – это машина, преобразующая электрическую энергию в

Из книги автора

Верньерный ракетный двигатель Верньерный ракетный двигатель – ракетный двигатель, который предназначен для обеспечения управления ракетой-носителем на активном участке. Иногда используется название «рулевой ракетный

Из книги автора

Радиоизотопный ракетный двигатель Радиоизотопный ракетный двигатель – ракетный двигатель, в котором нагрев рабочего тела происходит за счет выделения энергии при распаде радионуклида, либо продукты реакции распада сами создают реактивную струю. С точки зрения

Из книги автора

Разгонный ракетный двигатель Разгонный ракетный двигатель (маршевый) – основной двигатель ракетного летательного аппарата. Его основная задача – это обеспечение необходимой скорости

Из книги автора

Солнечный ракетный двигатель Солнечный ракетный двигатель, или фотонный ракетный двигатель, – ракетный двигатель, использующий для получения тяги реактивный импульс, который создают частицы света, фотоны при воздействии на поверхность. Примером простейшего

Из книги автора

Тормозной ракетный двигатель Тормозной ракетный двигатель – ракетный двигатель, который используется для торможения при возврате космического аппарата на поверхность Земли. Торможение необходимо для снижения скорости космического аппарата перед входом в более

Многих металлов.

Продолжая начатый разговор, мы узнаем, что такое электрический реактивный двигатель , каковы принципы его работы и сфера применения, и даже получим ответ на вопрос, возможен ли полет на в ближайшее время…

Для начала вернемся к ударным взрывам металлов . Важнейшим условием этого процесса является скорость металла.

Если для урана критическая скорость 1 500 м/с, для железа она превышает 4 000 м/с.

Поэтому от некоторых метеоритов, падающих на землю с такой или даже большей скоростью, не остается и следа. Они превращаются в тончайшую …

На такую особенность обратил внимание еще в 1929 году знаменитый создатель наших двигателей и ракет Валентин Петрович Глушко.

Фото 1. Академик Валентин Петрович Глушко

Он написал статью под весьма интригующим заголовком «Металл как взрывчатое вещество».

В первых же ее строках автор сказал, что речь пойдет не об использовании металла в качестве взрывчатки, а о том, что при пропускании достаточно сильного импульса электрического тока через металлическую проволоку может произойти взрыв.

Температура при этом повышается до 300 000 градусов. Энергия такого взрыва превышает во много раз энергию взрыва самого мощного взрывчатого вещества, взятого в количестве, равном массе проволоки.

При этом сама энергия превышает энергию вызвавшего его импульса тока.

Электрический реактивный двигатель

Энергия такого взрыва была использована В.П. Глушко в миниатюрном электрическом реактивном двигателе (ЭРД) , разработанным в начале 1930-х годов.

Двигатель легко умещался на ладони.

В него поступала металлическая проволока и подавались электрические импульсы, превращающие ее в пар.

Фото 2. Электрический реактивный двигатель (ЭРД), созданный В.П. Глушко в 1929-1933 гг.

Этот пар выходил через специальное сопло со скоростью в несколько десятков тысяч метров в секунду.

Чтобы за 4 месяца набрать скорость 30 км/с, двигатель должен потреблять мощность… 300 Вт.

Не так много, в 3 раза меньше мощности утюга! Но у утюга есть розетка, а где взять розетку в ?

В качестве источника энергии для ракеты, оснащенной ЭРД, В.П. Глушко предложил использовать фотоэлементы.

Ракета, оснащенная такими двигателями, самостоятельно выйти в космос не может. Для старта должен применяться другой двигатель.

Но после выхода в космическое пространство «солнечная» ракета, оснащенная ЭРД, могла бы за несколько суток набрать такую скорость, которая недоступна для ракет любых других типов.

Подобная схема полета на Марс ныне рассматривается в российском проекте высадки космонавтов на Красную планету.

Комплекс, состоящий из набора ЭРД, системы хранения и подачи рабочего тела (СХиП), системы автоматического управления (САУ), системы электропитания (СЭП), называется электроракетной двигательной установкой (ЭРДУ) .

Идея использовать для ускорения электрическую энергию в реактивных двигателях возникла практически в начале развития ракетной техники. Известно, что такую идею высказывал К. Э. Циолковский . В -1917 годах Р. Годдард провёл первые эксперименты, а в 30-х годах XX столетия в СССР под руководством В. П. Глушко был создан один из первых действующих ЭРД.

С самого начала предполагалось, что разнесение источника энергии и ускоряемого вещества позволит обеспечить высокую скорость истечения рабочего тела (РТ) , а также и меньшую массу космического аппарата (КА) за счёт снижения массы хранимого рабочего тела . Действительно, в сравнении с другими ракетными двигателями ЭРД позволяют значительно увеличить срок активного существования (САС) КА, существенно при этом снизив массу двигательной установки (ДУ), что, соответственно, позволяет увеличить полезную нагрузку, либо улучшить массо-габаритные характеристики самого КА.

Расчёты показывают, что использование ЭРД позволит сократить длительность полёта к дальним планетам (в некоторых случаях даже сделать такие полёты возможными) или, при той же длительности полёта, увеличить полезную нагрузку.

Принятая в русскоязычной литературе классификация электроракетных двигателей

ЭТД, в свою очередь, делятся на электронагревные (ЭНД) и электродуговые (ЭДД) двигатели.

Электростатические делятся на ионные (в том числе коллоидные) двигатели (ИД, КД) - ускорители частиц в униполярном пучке, и ускорители частиц в квазинейтральной плазме. К последним относятся ускорители с замкнутым дрейфом электронов и протяжённой (УЗДП) или укороченной (УЗДУ) зоной ускорения. Первые принято называть стационарными плазменными двигателями (СПД) , также встречается (всё реже) наименование - линейный холловский двигатель (ЛХД), в западной литературе именуется холловским двигателем. УЗДУ обычно называются двигателями с ускорением в анодном слое (ДАС) .

К относят двигатели с собственным магнитным полем и двигатели с внешним магнитным полем (например, торцевой холловский двигатель - ТХД).

Импульсные двигатели используют кинетическую энергию газов, появляющихся при испарении твёрдого тела в электрическом разряде.

В качестве рабочего тела в ЭРД могут применяться любые жидкости и газы , а также их смеси. Тем не менее, для каждого типа двигателей существуют рабочие тела, применение которых позволяет достигнуть наилучших результатов. Для ЭТД традиционно используется аммиак , для электростатических - ксенон , для сильноточных - литий , для импульсных - фторопласт .

Недостатком ксенона является его стоимость, обусловленная небольшим годовым производством (менее 10 тонн в год во всём мире), что вынуждает исследователей искать другие РТ, похожие по характеристикам, но менее дорогие. В качестве основного кандидата на замену рассматривается аргон . Он также является инертным газом, но, в отличие от ксенона имеет большую энергию ионизации при меньшей атомной массе. Энергия , затраченная на ионизацию на единицу ускоренной массы, является одним из источников потерь КПД .

ЭРД характеризуются малым массовым расходом РТ и высокой скоростью истечения ускоренного потока частиц. Нижняя граница скорости истечения примерно совпадает с верхней границей скорости истечения струи химического двигателя и составляет около 3 000 м/с. Верхняя граница теоретически неограничена (в пределах скорости света), однако для перспективных моделей двигателей рассматривается скорость, не превышающая 200 000 м/с. В настоящее время для двигателей различных типов оптимальной считается скорость истечения от 16 000 до 60 000 м/с.

В связи с тем, что процесс ускорения в ЭРД проходит при низком давлении в ускорительном канале (концентрация частиц не превышает 10 20 частиц/м³), плотность тяги довольно мала, что ограничивает применение ЭРД: внешнее давление не должно превышать давление в ускорительном канале, а ускорение КА очень мало (десятые или даже сотые g ). Исключением из этого правила могут быть ЭДД на малых КА.

Электрическая мощность ЭРД колеблется от сотен ватт до мегаватт. Применяемые в настоящее время на КА ЭРД имеют мощность от 800 до 2 000 Вт.

Электрореактивный двигатель в Политехническом музее, Москва. Создан в 1971 году в институте атомной энергии им. И. В. Курчатова

В 1964 году в системе ориентации советских КА «Зонд-2» в течение 70 минут функционировали 6 эрозионных импульсных РД, работавших на фторопласте ; получаемые плазменные сгустки имели температуру ~ 30 000 К и истекали со скоростью до 16 км/с (конденсаторная батарея имела ёмкость 100 мк , рабочее напряжение составляло ~ 1 кВ). В США подобные испытания проводились в 1968 году на КА «ЛЭС-6». В 1961 году пинчевый импульсный РД американской фирмы «Рипаблик авиэйшен» (англ. Republic Aviation ) развил на стенде тягу 45 мН при скорости истечения 10-70 км/с.

1 октября 1966 года трёхступенчатой геофизической ракетой 1Я2ТА была запущена на высоту 400 км автоматическая ионосферная лаборатория «Янтарь-1» для исследования взаимодействия реактивной струи электрического ракетного двигателя (ЭРД), работавшего на аргоне, с ионосферной плазмой. Экспериментальный плазменно-ионный ЭРД был впервые включён на высоте 160 км, и в течение дальнейшего полёта было проведено 11 циклов его работы. Была достигнута скорость истечения реактивной струи около 40 км/с. Лаборатория «Янтарь» достигла заданной высоты полёта 400 км, полёт продолжался 10 минут, ЭРД работал устойчиво и развил проектную тягу в пять граммов силы. О достижении советской науки научная общественность узнала из сообщения ТАСС.

Во второй серии экспериментов использовали азот . Скорость истечения была доведена до 120 км/с. В -1971 годах запущено четыре подобных аппарата (по другим данным, до 1970 года и шесть аппаратов).

Осенью 1970 года успешно выдержал испытания в реальном полёте прямоточный воздушный ЭРД . В октябре 1970 года на XXI конгрессе Международной астрономической федерации советские учёные - профессор Г. Гродзовский , кандидаты технических наук Ю. Данилов и Н. Кравцов, кандидаты физико-математических наук М. Маров и В. Никитин, доктор технических наук В. Уткин - доложили об испытаниях воздушной двигательной установки. Зарегистрированная скорость реактивной струи достигла 140 км/с.

В 1971 году в системе коррекции советского метеорологического спутника «Метеор» работали два стационарных плазменных двигателя разработки и ОКБ Факел, каждый из которых при мощности электропитания ~ 0,4 кВт развивал тягу 18-23 мН и скорость истечения свыше 8 км/с. РД имели размер 108×114×190 мм, массу 32,5 кг и запас РТ (сжатый ксенон) 2,4 кг. Во время одного из включений один из двигателей проработал непрерывно 140 ч. Эта электрореактивная двигательная установка изображена на рисунке.

Также электроракетные двигатели используются в миссии Dawn . Планируется использование в проекте BepiColombo .

Хотя электроракетные двигатели имеют малую тягу по сравнению с жидкотопливными ракетами , они способны работать длительное время и осуществлять медленные полеты на большие расстояния

Курсовая работа

По теме:

" Электрические ракетные ионные двигатели "

Общая теория электрических ракетных двигателей (ЭРД)

Общие принципы ЭРД

Основоположник космонавтики К.Э. Циолковский впервые в 1911 г. высказал мысль, что с помощью электричества можно придавать громадную скорость частицам, выбрасываемым из реактивного прибора. Позже класс двигателей, основанных на этом принципе, стали называть электрическими ракетными двигателями . Однако до сих пор не существует общепринятого и вполне однозначного определения ЭРД.

В Физическом энциклопедическом словаре ЭРД – это ракетный двигатель, в котором рабочим телом служит ионизированный газ (плазма), ускоряемый преимущественно электромагнитными полями; в энциклопедии «Космонавтика» – это двигатель, в котором в качестве источника энергии для создания тяги используется электрическая энергия, вырабатываемая бортовой энергоустановкой космического аппарата, в Политехническом словаре приводится третий вариант определения ЭРД: это реактивный двигатель, в котором рабочее тело разгоняется до высоких скоростей с использованием электрической энергии.

Наиболее логично электрическими ракетными двигателями называть двигатели, в которых для разгона рабочего тела используется электрическая энергия, причем источник энергии может находиться как на борту космического аппарата (КА), так и вне его. В последнем случае энергия либо непосредственно подводится к ускоряющей системе от внешнего источника, либо передается на КА с помощью сфокусированного пучка электромагнитного излучения.

Такого взгляда на ЭРД придерживались и пионеры космонавтики – Ю.В. Кондратюк, Г. Оберт, Ф.А. Цандер, В.П. Глушко. В работе Ю.В. Кондратюка 1 рассматривался КА, на который падает сконцентрированный луч света, и электрический реактивный двигатель, основанный на электростатическом ускорении крупных заряженных частиц, например, графитового порошка. В той же работе указаны конкретные способы повышения эффективности электродинамического ускорителя массы (ЭДУМ) в применении плазменного контакта и разгона в вакууме. В 1929 г. Г. Оберт 2 описал ионный двигатель. В 1929–1931 гг. впервые был создан и испытан в лаборатории импульсный электротермический ЭРД, автором которого является основоположник ракетного двигателестроения В.П. Глушко. Им же был предложен и сам термин «электрический ракетный двигатель».

Однако дальнейшего развития в тот период работы по ЭРД не получили из-за отсутствия легких и эффективных источников энергии. Эти работы были возобновлены в СССР и за рубежом после запуска в нашей стране в 1957 г. первого искусственного спутника Земли и первого полета в космос в 1961 г. человека – гражданина СССР Ю.А. Гагарина. В эти годы по инициативе С.П. Королева и И.В. Курчатова была принята, комплексная программа научно-исследовательских и опытно-конструкторских работ по ЭРД разных типов. Одновременно были развернуты работы по созданию эффективных источников энергии для КА (солнечные батареи, химические аккумуляторы, топливные элементы, ядерные реакторы, радиоизотопные источники). Основное направление исследований, сформулированных в этой программе, состояло в разработке научных основ и создании высокоэффективных образцов ЭРД, предназначенных для решения задач промышленного освоения околоземного космического пространства и обеспечения научных исследований Солнечной системы.

Наиболее важное значение для формирования современной теории ЭРД имели следующие научно-технические идеи.

Принцип электродинамического ускорения, предложенный в 1957 г. Л.А. Арцимовичем и его сотрудниками , был положен в основу ускорителей разных классов – импульсных ЭРД на газообразном и твердом рабочем веществе, стационарных сильноточных ЭРД.

Принцип бездиссипативного ускорения ионов в замагниченной плазме самосогласованным электрическим полем. Этот механизм реализуется в плазменных двигателях с азимутальным дрейфом электронов, в торцевых холловских двигателях, в определенной степени в импульсных двигателях с электромагнитным разгоном плазмы. В наиболее последовательной форме этот метод ускорения реализован в двигателе с анодным слоем (ДАС) – оптимальном варианте двигателей с азимутальным дрейфом электронов. В первоначальной форме идея ДАС была сформулирована А.В. Жариновым в конце 50-х годов; позже на основе этой идеи, дополненной рядом изобретений, были разработаны высокоэффективные двух- и одноступенчатые двигатели с азимутальным дрейфом.

В США Г. Кауфман предложил принцип плазменно-ионного двигателя (ПИД), в котором ионы также разгоняются продольным электрическим полем, однако в отличие от ДАС они предварительно вытягиваются из плазменного разряда с электронами, осциллирующими в продольном магнитном поле. Плазменно-ионный двигатель обладает высоким КПД и ресурсом, но проигрывает ДАС в универсальности и диапазоне регулирования рабочих характеристик.

В связи с проводившимися в последние годы проектными исследованиями космических солнечных электростанций возродился интерес к схемам ЭРД с подводом энергии от внешнего источника. Развивая идеи К.Э. Циолковского и Ю.В. Кондратюка, Г.И. Бабат 1 в 1943 г. предложил использовать энергию, передаваемую на летательный аппарат в виде хорошо сфокусированного пучка СВЧ-излучения с земли или космического аппарата. В 1971 г. А. Кантровиц для тех же целей рассматривал лазерное излучение.

В 1975 г. Дж О"Нейл предложил использовать электродинамический ускоритель массы (ЭДУМ) для транспортировки в космос с поверхности Луны материалов, предназначенных для строительства космических солнечных электростанций. Очевидно, эти проекты ориентированы на решение задач отдаленной перспективы, строительства орбитальных объектов околоземной энергопроизводственной инфраструктуры.

Особенности двигательных установок с малой тягой

Разделение в ЭРД источника энергии и рабочего вещества позволяет преодолеть ограничение, присущее химическим двигателям, – относительно невысокую скорость истечения. Но, с другой стороны, если используется бортовой источник энергии, неизбежно возникает другое ограничение – сравнительно малая тяга. Поэтому, если не рассматривать пока особых случаев, например, световых двигателей, ЭРД следует отнести к классу двигателей малой тяги, которые способны обеспечить лишь небольшое ускорение, а потому пригодны дан выполнения различных транспортных операций непосредственно в космическом пространстве. ЭРД, как правило, – это космические ракетные двигатели малой тяги.

Если, например, двигатель развивает тягу 10 Н,; масса КА 10 т, то создаваемое им ускорение составит 10» 3 м/с 2 , т.е. примерно 10» 4 g 0 ( go ускорение свободного падения на поверхности Земли). Разумеется, такой двигатель не пригоден для выведения космических аппаратов с Земли на орбиты искусственных спутников.

Эта ситуация может измениться, когда будут соз1аны эффективные лазерные двигатели или электродинамические ускорители массы, отличительная особенность которых состоит в том, что источник энергии не обязательно находится на борту КА. В этом случае должно говорить об ЭРД, который обеспечивает высокую скорость истечения и большое ускорение одновременно.

Чтобы выявить другие специфические особенности ЭРД как космических двигателей, рассмотрим задачу перехода между двумя околоземными круговыми орбитами. Обратимся к уравнению Циолковского

(1.1)
(1.1)

(1.1)

где и" и v– приращение скорости КА и скорость истечения рабочего вещества соответственно; М о – начальная масса КА; М к = М о – mt масса К А на конечной орбите. Здесь t – время перехода между орбитами; т – расход массы рабочего вещества. Из (1.1) приращение скорости

(1.2)

Изменение кинетической энергии КА при полете происходит со скоростью

Изобретение относится к области создания электрических ракетных двигателей. Предлагается устройство электрического ракетного двигателя, которое так же, как известный тип двигателя с однородным стационарным плазменным разрядом (стационарные плазменные двигатели - СПД), содержит сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС. В отличие от СПД предлагаемый двигатель использует неоднородный газоплазменный поток рабочего тела. Для создания плазменных неоднородностей в форме плазменных колец двигатель содержит импульсный высокочастотный источник напряжения, подключенный к дополнительной катушке, установленной на входе канала ускорителя. Поддержание разряда в плазменных кольцах, индуктивно связанных с катушкой возбуждения магнитного поля, осуществляется источником переменной ЭДС, подключенного к катушке. Для размыкания тока в плазменных кольцах в момент их выхода из канала магнитодинамического ускорителя на входе в диффузор двигателя установлены радиальные диэлектрические ребра. Изобретение позволяет увеличить тягу и длительность работы двигателя. 1 ил.

Изобретение относится к области создания электрических ракетных двигателей.Известен способ [I], повышающий тягу электрического ракетного двигателя, который предлагает заменить стационарный однородный плазменный разряд неоднородным газоплазменным потоком. Плазменные сгустки (Т-слои) устойчивы к развитию перегревной неустойчивости, что позволяет многократно повысить плотность рабочего тела, проходящего через канал двигателя, и таким образом пропорционально увеличить тягу. Устройство, реализующее этот способ, состоит из газодинамического сопла, канала магнитогидродинамического ускорителя прямоугольного сечения с электродными стенками, магнитной системы, создающей магнитное поле в канале ускорителя, поперечное к потоку рабочего тела, системы импульсного электродного сильноточного разряда, формирующей в потоке Т-слои, источника постоянной ЭДС, подключенной к электродам канала ускорителя. Устройство должно обеспечивать ускорение потока за счет электродинамической силы, действующей в объеме Т-слоев, которые в свою очередь действуют на газовый поток как ускоряющие плазменные поршни. Численное моделирование рабочего режима в канале данного устройства показало, что может достигаться скорость истечения до 50000 м/с при уровне тяги до 1000 Н.Недостатком устройства, реализующего известный способ, является использование электродов как в цепи источника, формирующего Т-слои, так и в цепи источника, обеспечивающего режим ускорения в МГД-канале. Режим протекания тока в Т-слоях является дуговым. Неизбежная дуговая эрозия электродов существенно сокращает ресурс работы двигателя (из опыта работы плазмотронов следует ожидать, что электроды обеспечат не более 100 часов непрерывной работы). Для космических аппаратов многократного использования ресурс двигателя должен быть не меньше года непрерывной работы.Известен электрический ракетный двигатель (стационарный плазменный двигатель - СПД), который используют для ускорения плазменного потока за счет электродинамического воздействия на электропроводную среду. Это устройство состоит из сверхзвуковых сопел, канала магнитогидродинамического (МГД) ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушки возбуждения магнитного поля, подключенной к источнику постоянной ЭДС, системы электропитания стационарного разряда в плазме. Устройство работает по следующей схеме. По газодинамическому соплу подается газообразное рабочее тело, которое при входе в канал МГД-ускорителя попадает в область стационарного плазменного разряда, поддерживаемого системой электропитания, ионизуется и переходит в плазменное состояние. Ток в разряде протекает вдоль канала, при этом анод системы электропитания является газодинамическим соплом, а катод находится на выходе из канала. Устойчивый режим ускорения реализуется только при очень низкой плотности плазмы, при которой параметр Холла может достигать значений порядка 100. В этих условиях небольшой разрядный ток вдоль канала генерирует значительный азимутальный ток, замкнутый сам на себя. Взаимодействие азимутального тока с радиальным магнитным полем, созданном катушкой возбуждения между коаксиальными полюсами магнитопровода, порождает в объеме плазмы ускоряющую электродинамическую силу. Замкнутость основного тока без использования для этого электродов позволяет сделать ресурс работы двигателя практически неограниченным.Недостатком известного устройства является низкая плотность рабочего тела, что необходимо для обеспечения устойчивой работы двигателя. Соответственно тяга такого двигателя не превышает 0,1 Н.В основу изобретения положена задача создания электрического ракетного двигателя большой тяги при длительности непрерывной работы порядка года.Поставленная задача достигается тем, что электрический ракетный двигатель, содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС, согласно данному изобретению снабжен импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС.Изобретение поясняется чертежом, на котором представлено поперечное сечение устройства.Электрический ракетный двигатель содержит сверхзвуковые сопла 1, канал 2 магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода 3, катушку 4 возбуждения магнитного поля, подключенную к источнику 5 переменной ЭДС, импульсный высокочастотный источник напряжения 6, подключенный к дополнительной катушке 7, установленной на входе в канал 2 ускорителя. Двигатель также содержит диффузор 8 с радиальными диэлектрическими ребрами 9.Электрический ракетный двигатель работает следующим образом.Нагретый газ (например, водород), температура которого определяется условиями бортового источника тепла, а давление - требованиями по тяге двигателя, задающими расход рабочего тела, разгоняют в сверхзвуковых соплах 1. Систему импульсного высокочастотного разряда 6 периодически включают с заданной временной скважностью, и каждое включение формирует в газовом потоке плазменный сгусток на входе канала 2 МГД ускорителя. Внешним источником переменной ЭДС создается переменный ток в катушке возбуждения 4, что порождает переменное во времени радиальное магнитное поле между полюсами коаксиального магнитопровода 3. Это генерирует вихревое электрическое поле азимутального направления. Под воздействием азимутального электрического и радиального магнитного полей из плазменных сгустков формируются самоподдерживающиеся азимутальные плазменные токовые витки (Т-слои), которые в свою очередь действуют на газовый поток как ускоряющие поршни. После канала МГД-ускорителя ускоренный поток попадает в расширяющийся канал-диффузор 8, в котором установлены радиальные диэлектрические ребра 9. Ребра обтекаются газовым потоком, но на них разрываются электрические цепи Т-слоев, что позволяет прервать электродинамическую стадию ускорения потока. В диффузоре 8, являющемся продолжением канала МГД-ускорителя, осуществляется дальнейшее ускорение газового потока за счет тепловой энергии, перешедшей из Т-слоев в поток.Было выполнено численное моделирование процесса ускорения потока водорода, содержащего Т-слои, в условиях режима, реализующего описанный способ. Показано, что предлагаемое устройство может быть реализовано со следующими параметрами, соответствующими задаче создания эффективного электрического ракетного двигателя (ЭРД):- КПД процесса трансформации электроэнергии в кинетическую энергию рабочего тела 95%;- средняя скорость потока на выходе из двигателя 40 км/с;- длина канала МГД-ускорителя 0,3 м;- средний диаметр канала МГД-ускорителя 11 см;- высота канала (расстояние между полюсами) 1 см- массовый расход рабочего тела 12 г/с;- температура водорода на входе в ЭРД 1000 К;- давление водорода на входе в ЭРД 10 4 Па;- среднее значение ЭДС источника питания ЭРД 5 кВ;- среднее значение тока в обмотке возбуждения 2 кА;- потребляемая электрическая мощность 10 МВт;- тяга двигателя 500 НПредлагаемый электрический ракетный двигатель найдет применение при создании космической транспортной системы, предназначаемой для транспортировки грузов с околоземных орбит на геостационарные, лунные и далее к планетам солнечной системы.Источники информации1. B.C. Славин, В.В. Данилов, М.В. Краев. Способ ускорения потока рабочего тела в канале ракетного двигателя, патент РФ № 2162958, F 02 K 11/00, F 03 H 1/00, 2001.2. С.Д. Гришин, Л.В. Лесков. Электрические ракетные двигатели космических аппаратов. - М.: Машиностроение, 1989, с. 163.

Формула изобретения

Электрический ракетный двигатель, содержащий сверхзвуковые сопла, канал магнитогидродинамического ускорителя, расположенного в цилиндрической полости между полюсами коаксиального магнитопровода, катушку возбуждения магнитного поля, подключенную к источнику ЭДС, отличающийся тем, что устройство снабжено импульсным высокочастотным источником напряжения, подключенным к дополнительной катушке, установленной на входе канала ускорителя, и диффузором с радиальными диэлектрическими ребрами, при этом катушка возбуждения магнитного поля подключена к источнику переменной ЭДС.

Похожие патенты:

Изобретение относится к плазменной технике и может использоваться в электроракетных двигателях на базе ускорителя плазмы с замкнутым дрейфом электронов, а также в технологических ускорителях, применяемых в процессах вакуумно-плазменной технологии